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The boundary layer on an axisymmetric surface above which the flow is rotating 
about the axis of symmetry is considered. Transformations of the governing 
equations which permit the generalizations of a known solution for one meridian 
shape in incompressible flow to a family of meridian shapes are shown t o  exist. 
For compressible flow, a transformation of the Stewartson-Illingworth type was 
found which reduces a compressible flow problem to an incompressible case. Also, 
remarks are made concerning the invariance of the turbulent boundary-layer 
integral equations assuming particular semi-empirical shear laws. 

1. Formulation of the problem 
Steady laminar axisymmetric boundery layers are considered here , with the 

outer flow, or the wall surface, or both rotating about the axis of symmetry. If 
the outer flow rotates, the circumferential velocity outside the boundary layer, 
V 7  is assumed to be independent of the axial co-ordinate z, but no apriori restric- 
tion is made on the radial distribution, i.e. ‘V = V(r) .  Since these steady inviscid 
flows are incompatible with any radial motions (except for rV = const.), any 
meridional motion is required to occur inside the boundary layer (even in the 
permissive case r‘V = const., including ‘V = 0) .  

The radius 12 of the wall surface may be given either as a function of z, or of the 
arclength 5 along the meridian. With boundary-layer co-ordinates 5, n introduced 
in a meridional plane, the corresponding velocity components u, w can be ob- 
tained from a streamfunction $(5, n): 

Let the boundary-layer equations for a compressible medium be given in the 
von Mises form : P 

* Present address: Swiss Federal Institute of Technology, Zurich. 
7 Present address: TRW Systems, Redondo Beach, California. 
1 These equations are not valid in the limit dR/ds  +- 0, i.e. for nearly cylindrical shapes. 
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where y = vR is used instead of the circumferential velocity v inside the boundary 
layer. The boundary conditions are 

u(0) = u(c0) = 0 (4) 

y (o )  = yw, ~ ( c o )  = r = VR. (5) 

in accordance with previously stated restrictions, and 

The energy equation is considered only for a perfect gas with Prandtl number 1, 
in which case it can be written in the form 

where H = c ~ T + ~ ( u ~ + v ~ )  (7) 

is the stagnation or total enthalpy. Boundary conditions are 

r2 
H ( 0 )  = H,, H ( w )  H, = C~,T,+- 2R2' 

The first aim of this paper is to present transformations of these boundary- 
Iayer equations which leave them invariant. Such co-ordinate transformations 
will be shown to exist; they permit the generalizat'ion of a known solution for one 
meridian shape to a set of solutions for a family of meridian shapes. 

Next, a transformation of the Stewartson-Illingworth type (with attendant 
restrictions) will be given, which reduces a compressible boundary-layer problem 
to the incompressible case, albeit on a transformed meridian shape. 

Finally, brief remarks will be made on the turbulent case, under the assump- 
tion that certain semi-empirical shear laws are valid. 

2. Transformations which leave the boundary-layer equations un - 
changed 

The dynamic similarity properties of the boundary-layer problem are well 
known; it is therefore no loss of generality to restrict attention to transformations 
involving the same medium, and to exclude the trivial transformation involving 
full geometric similarity. Non-trivial (but well known) is a transformation which 
may be called ' quasi-affine ' : 

with a and $ constant. The prefix 'quasi' is used because the meridian shape 
R(z) is not affinely transformed, except for the family of cones. Equations ( 2 )  
and (3) are made independent of a and $ by using the following variables: 

S' = as, R' = $R, (9) 

ul = y' = by, r' = p r ,  II.' =p+ (10) 

(11) and, in view of (1), n' = ah. 

The best-known application of this transformation is the generalization of 
solutions obtained for a flat rotating wall to the family of cones (with possible 
singular effects at R = 0 ignored). 
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The invariance considerations can be extended to include compressibility 
and the energy equation. However, it is more convenient to explore the case of a 
constant property medium first, and to reconsider compressibility later. 

To obtain a non-trivial transformation, a solution of (2) and (3) is assumed to 
be known; all variables pertaining to the known solution are characterized by 
the subscript ‘ 1 ’. It is seen from (2) and (3) that a condition for the reducibility 
of a general case (no subscripts) to the known case (subscript 1) is 

R2ds = RTds,. (12) 

The quantity involved in this equation is recognized as the differential of the 
Mangler variable, which in non-rotating flow ( y  = I? = 0) reduces the problem 
to the plane case. However, the meridian shape does not enter first-order boun- 
dary-layer theory in the case of non-rotating flow; the problem under considera- 
tion is non-existent in this case. 

For rotating flow, it is essential that the pressure gradient term in (2), which 
explicitly involves the meridian slope, remains unchanged. Inspection of the 
f i s t  right-hand side term in (2) gives the conditions, upon consideration of the 
relation already established in (12), that 

I 

This can be integrated to give 
1 1  

- = - + A  
R2 RT 

and the constant of integration A is the free parameter of the transformation now 
established by (12) and (14). The differential relation between ds/dR and 
dsJdR, follows from (12) and (1  3) : 

dR - dR, 
and finally, with (14)’ 

For a given shape R,(s,), the slope ds,/dR, has to be expressed by R,, and finally 
by R, using (14); a differential equation for a family of shapes is obtained, with 
A as the free parameter. R,(s,) is recovered for A = 0. 

A further generalization can be obtained by the combination of this transfor- 
mation with the quasi-affine relations given by (9). It is seen from (15) or (16) 
that no loss of generality occurs upon applying the transformation to the variables 
s and R only, and by normalizing it with p = 1. The transformation thus 
generated can be obtained by replacing (12) by 

R2ds = aR?ds, P a )  

while leaving (13) and (14) unchanged. Equation (16) becomes 

8-2 
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The rules of this transformation are completed by putting 

and from (1) 
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u = ul, y =  yl, r = rl, +=a#+, 

Rl Rl n = aQ-nl, w = a*--w 
R R ’* 

17) 

The definition of the generalized problem is completed by the calculation of 
r (R) ,  which together with R(s) is a ‘generating function’ of the problem. As 
stated above, the relation is I? = rl, and by use of (14) this means 

i.e., in the known function r1(Rl), R,, given by (14), has to be inserted. Thus the 
generalization involves a redistribution of the rotation in the outer flow, except 
for the important case Fl = const. 

If the wall rotates, the boundary value yw has to  be transformed in the same 
manner as r. Solutions of interest in this case involve almost exclusively rigid- 
body rotation, and this mode is not preserved by the transformation. Therefore 
no examples with moving walls will be considered. 

Finally, the meridian shape in the x ,  R co-ordinate system can be obtained upon 
integrating the differential relation 

Applications will be restricted to the case where the known solution is assumed 
on a flat surface, dsl/dRl = 1. Equation (16a) can be integrated and gives 

s = a( 1 - +AR2) (1 - AR2)-%R. (21) 

A trivial constant is absorbed in the origin of s. For the conventional z,  R re- 
presentation of the meridian shape, which follows from (20), no closed integral 
was found. Numerical calculations were carried out for three cases with A > 0, 
and one case with A < 0. 

If A > 0, it is most convenient to put A = 1/R*2, and to scale the result with 
R*; all meridians approach a cylinder with radius R* asymptotically. For 
a = 1,  a ‘cup-shaped’ meridian results as shown in figure 1. If a < 1, there is a 
hole in the middle with radius R, = R*( 1 - a+)*. The meridian has zero slope at 
R = R, and develops a cup-shape approaching R = R*, as shown in figure 2 
for a2 = +. In  the case a > 1, the cup is closed again, but has a cone-shaped 
bottom with the slope a2- 1 for R = 0. Figure 3 gives the shape for a2 = 2. 

For A < 0, solutions exist only for a > 1, and within a circle with radius 
R, (say), where dzldR = 0. In  order to scale the resulting meridian with R,, 
define 

(22) A = 
RL 

Figure 4 shows the shape with a2 = 2; the centre is conical, as in figure 3, but 
the meridian ends abruptly with a horizontal slope at  R = R,. 
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FrGuRE 1. Meridian shape z for A > 0, a2 = 1, and the radial mass flux Q for a boundary 
layer beginning at R, = QR* with constant circulation in the outer flow. 
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FIGURE 2. Meridian shape z for A > 0, aZ = +, and the radial mass flux Q for a boundary 
layer beginning at  R, = +R* with constant circulation in the outer flow. 
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FIGURE 3. Meridian shape z for A > 0, cx2 = 2, and the radial mass flux Q for a boundary 
layer beginning at  R, = #R* with constant circulation in the outer flow. 
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FIGURE 4. Meridian shape z for A < 0, a2 = 2, and the radial mass flux Q for a boundary 
layer beginning at R, = R* with constant circulation in the outer flow. 
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The remaining steps which lead to explicit results will be demonstrated for a 
specific known solution over a flat surface, namely for a potential vortex flow 
over a finite flat disk. This problem, which was f i s t  solved by a momentum 
integral method by Taylor (1950), has since been treated more accurately by 
several authors; a series expansion method applied by Mack (1962) and a numeri- 
cal solution by Anderson (1966) are particularly noteworthy. These solutions 
permitted a critical re-evaluation of momentum methods, and a simplified 
momentum integral technique (originally proposed by Anderson and Mack) 
has been found to give closed-form results of high accuracy. Critical discussion 
of the momentum integral method was given by Rott & Lewellen (1966), where 
further references to this subject are given. 

A particularly important boundary-layer variable is $(m) = Q ,  which re- 
presents the total radial flux (divided by 27r) in the boundary layer. The explicit 
momentum integral result for this quantity is, for arbitrary meridian shape and 
I’ distribution, with the wall at rest and the boundary-layer origin at  R,, 

where A, = 4.93 is a profile constant. It is interesting to note that this formula 
does have the invariance property with respect to the proposed transformation, 
as 

is easily verified, and, with I? = l?,, the formula gives for Q (which has to trans- 
form like ~) Q = a*&,. This result is to be expected from the derivation of (23). 
The formula can be applied approximately to  any meridian shape; in this sense, 
the ‘exact’ transformation is not needed for its use. However, suppose that (23) 
has been tested by comparison with a known exact solution and has been found 
sufficiently accurate. Then the cases generalized by the proposed transformation 
are just as accurate, and the use of (23) gives simple closed-form results. 

The known solution is taken to be the case of a vortex of constant strength 
r,, over a disk of the radius R,,, for which (23) yields the ‘tested’ result 

(d@RdR)* = (a2dstR1dR1)& (24) 

To generalize this result for the meridian shapes presented before, a radius 
R, has to be chosen which will be the outer edge for the generalized flow. With 
Ro/R* = 7, the relation between R, and R,, is (according to (14), for A > 0) 

and the general correspondence between R and R, is given by 

Q = dQ, follows from (25) with = l?, and the insertion of R,, and R, by use of 
(26) and (27). The normalized flux &/R,(ppl?,)* is plotted in figures 1 to  3 for 
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7 = $. These results can be considered ‘exact ’, in the sense of the preceding 
discussion. 

If A < 0, the general relation between R and R, is renormalized in the form 

R 
R, = 

Let this example be restricted to the case when R,, = R,, so that, from (28), 

R,, = R,&. (29) 

The normalized flux found from Q = at&, is plotted in figure 4. 

3. Comparison with results of an approximate transformation 
A different interesting ‘local ’ approximation can be obtained as follows: if the 

left-hand side terms of (2) and (3) are changed by inserting alas = (a/aR) (dR/ds) ,  
it is possible to eliminate dR/ds approximately by putting 

while the exact application of the variable $ naturally gives rise to additional 
terms in (2) and (3), except for dR/ds = const. Approximately, however, the 
explicit appearance of s is avoided by these operations, so that, in terms of the 

as 4 
Q = (a) QW. 

unchanged variable R, 

Now is the known solution for a flat surface, taken as the standard reference 
case, The interest in this approximation stems from the fact that the flux varia- 
tion in Ekman layers with dR/ds has exactly the form given by (31), and can be 
calculated ‘locally ’. 

The approximate formula (31) applied to the examples treated previously 
gives results shown in figures 1-4. Initially, the predictions of the local and the 
exact transformations are the same. However, for the three cases corresponding 
to A > 0, a significant departure occurs as the centre is approached, with the 
approximate formula underestimating the mass flux. The agreement is seen to 
be good over the entire surface for the one case with A -= 0. 

4. Transformations which reduce the compressible flow equations to 
the incompressible case 

In  this section, the equations are reconsidered with variable properties. A 
necessary condition for the reducibility of (2) to the constant property case is 
p,u = pm,uUa, = const. across the boundary layer, or ,u - T; this assumption is 
made herein. It is seen from (2) that, if l? = 0, then this condition is sufficient to 
reduce the general problem to the constant property case even if y + 0, i.e. for 
rotating surfaces with the outer flow at rest; the Howarth-Dorodnitsyn trans- 
formation is valid. If I? $: 0, the coupling of ( 2 )  to  the energy equation occurs 
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through the appearance of pm/p in the pressure gradient term. In  principle, this 
also happens in non-rotating flow, and the method known from the work of 
Illingworth (1949) and Stewartson (1949) will be used to eliminate this coupling. 

Again, the transformation is only successful for a gas with Prandtl number 1,  
for which (6) holds; it has a solution 

with A and B constant, as comparison with (3) shows. If A + 0, there is heat 
transfer to the wall; these solutions have been noted and explored by Ohren- 
berger (1967), Barcilon (1966) and Anderson (1966). Here, however, only the 
case A = 0 are considered; this restriction completes the necessary conditions 
for the desired transformation. For the flow, this means that it is isoenergic; 
the enthalpy outside the boundary layer is 

(33) 

H = A y + B ,  (32) 

r2 
cPTw h, = H--- 

2 R2 

and with the relation (34) 

the state of the outer flow is determined, as soon as F(R) is specified. As is well 
known, an isentropic relation is found for I? = const.; however, the validity of 
the proposed transformation is not restricted to this special case. For example, if 

and the gas is perfect (so that ( K -  l ) h  = p /p ) ,  it follows from (33) and (34) that 
r = c ~ m  (35) 

where p s  is the stagnation pressure and H is the stagnation enthalpy. Actually, 
to find the means of realization for a non-isentropic but isoenergic outer flow is an 
open question. Examples will be restricted therefore to the irrotational iso- 
energic-isentropic case, which can be realized by the superposition of a small 
sink to the outer rotating flow. Its strength has to be small enough so that 
u(co) < V ,  and u(co) = 0 is still applicable approximately as outer boundary 
condition. 

Inside the boundary layer, the explicit solution for the temperature is 

It is seen that the wall is adiabatic and at  the constant temperature Hlc, if 
it is non-rotating; this is, however, not the only case for which the proposed 
transformation is applicable. Only the validity of (37) is a necessary condition. 

Important for the transformation of the pressure term in ( 2 )  is the relation 
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The transformation to the incompressible case is now achieved in two steps. 
First, the velocity is transformed by the relation 

u = F(s )u i ,  (39 )  

where now the subscript i refers to the (known) incompressible case. On the 
left-hand side of (2), a term quadratic in ui occurs, namely 

1 dF 
as 

jpP-UUq 

which has to compensate a right-hand side term in uUq. The latter appears when 
the bracket in the pressure gradient term is replaced by the expression given by 
(38 ) ,  and has the form 

(41)  
u2 P d R  F2 u2 1 dp F 2 2 - - - - 2 - -  - 

Zh, R5 ds R2 2h,p,  d s  ’ 
where the second expression results by the use of (34) .  The terms (40)  and (41)  
cancel if 

- 

for a perfect gas, or 

(42)  

(43)  

with the reference pressure chosen as ps. The second expression is only valid for 
power-law velocity distributions, and follows from (36 ) .  

Thus far, ( 2 )  and ( 3 )  have been changed to 

The second step, which reduces these equations to the incompressible form 
(subscript i) for a constant-property medium at the stagnation-point state of the 
compressible medium (subscripts), is completed by the use of the transformation 

Equation (47 )  gives what may be considered as a generalization of the Mangler 
variable, while (48) reduces the pressure gradient term to the incompressible 
form. The latter relation has a remarkably simple integral, namely 

Ri = F ( R )  R, (49 )  

which can be verified by use of (34) .  Not contained in this result is a possible 
generalization which would include the transformation of the incompressible 
or the compressible case onto itself, as discussed in the previous section. It is 
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proposed to use a ‘normalized ’ transformation to the incompressible case as 
given by (49), and to admit the ‘compound’ use of this relation with (14) (as 
well as with the quasi-affine relation) to obtain the most general transformation. 
Equations (47) and (48) lead to the relation 

It is possible to discuss the use of (50) for arbitrary viscosity-temperature 
laws ; this necessitates the use of an additional ‘ reference-temperature ’ approxi- 
mation, in order to obtain (44) and (45). However, applications are restricted 
here to  case ,um/ps = h,/H, for which the transformation, as defined by (39), 
(43), (46), (49) and (50), is exact. 

To find the meridian shape in the incompressible case, the right-hand side of 
(50) has to be expressed by Ri. Prom (32), (43) and (49), it follows for the power- 
law I?-distributions given by (35) that 

It is seen that dsi/dRi is less than ds/dR for all m is less than K / ( K -  1) 2 $. 
This occurs both for the isentropic case m = 0 and for rigid rotation m = 2. 

Thus, for the most interesting cases of compressible flow over a flat surface 
(ds/dR = l), no ‘real’ meridian shape can be constructed for the incompressible 
case with the normalization agreed upon thus far, since dsi/dRi < 1. 

It is now possible t o  invoke the generalizations of a given solution to  different 
meridian shapes, and to change from an unrealistic meridian to a realizable case. 
However, the subsequent discussion will be restricted to the momentum integral 
solution of the problem and (23) is considered as the solution of the incompressible 
case. This formula has been shown to be invariant with respect to the transforma- 
tion discussed in $2, so that its effect can be disregarded; when compounded 
with the transformation proposed in this section, the latter will be the only one 
to have an effect on the form of (23). 

The problem, then, is to think of (23) rewritten with subscript i and to find the 
generalization to the compressible case by use of the transformation established 
in this section. 

The result is 

To prove this formula, it is best to employ the original set of transformation 
equations, namely (46), (47) and (48). Such a derivation shows that, for the 
proof of (53) only, the function F and the integrated equation (49) need not be 
known. 
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As a first application, consider the initial behaviour of Q in the vicinity of 
R,, with R near enough to R, so that the variation of the integrand in (53) can be 
disregarded. If Qi denotes the flux calculated with constant property stagnation 
state values, then near R, 

The first factor merely changes the reference state from the stagnation point 
to the state a t  R,, while the second factor represents a 'genuine' effect of the 
local Mach number, based on the swirling velocity. 

1 .o 
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FIGURE 5. Normalized radial mass flux to the hollow core of a compressible potential 
vortex on a flat surface of ilnite radius in air. 

For the second example, consider I' = constant over a flat surface. The outer 
flow is isentropic, and for a perfect gas, with p N T, equation (53) becomes (by 
use of (33)) 

The radius of the hollow core of the compressible potential vortex is R, = I?( 2H)-*. 
The total flux a t  R, is of interest; it depends on the ratio < = R,/Ro = &/Vmax. 
For K = 1.4 (air), the exponent of the first factor inside the integral becomes 2,  
and the integration is elementary. Results are shown in figure 5; compared with 
Qi (obtained for = 0) ,  Q shows a steady decline. Also included in figure 5 is a 
comparison with Qoi which is obtained when freestream properties at  the initial 
radius Ro are used in a constant property formula, thus, 

The ratio Q/Qoi is plotted and shows the variation of the radial mass flux with 6 
when the static conditions a t  R, are held fixed. 
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The extension of the calculation to R, is naturally an idealization. For in- 
stance, it should be kept in mind that the small sink, which makes the isentropic 
case physically realistic, changes R, to a ‘limiting line’ at  a somewhat different 
radius. Moreover, near this limiting line viscous effects will become important 
in the outer flow even in those cases when they are negligible elsewhere. However, 
these effects do not change the flow except very near to R,. 

All these results are valid only if (i) pp = constant, (ii) the Prandtl number is 1, 
and (iii) the wall is adiabatic if at  rest; (37) is valid for moving walls. When the 
first two restrictions are violated, the resulting errors can be estimated, and 
corrections can be worked out. The last restriction is of a more fundamental 
nature. Nevertheless, the proposed transformation is useful for simplifying the 
equations in the case of compressible boundary layers with heat transfer; 
several applications were given by Ohrenberger (1967). 

5. Remark on turbulent flow 
In  retrospect, the method used in this paper can be summarized as follows: 

transformations were derived from the boundary-layer equations for laminar 
flow, but applications were restricted to the use of momentum integral methods. 
It is clear that the proper transformation of the momentum integral equations is 
a necessary but not a sufficient condition for the invariance of the full equations. 
It can be shown, however, that the invariance consideration of the constant- 
property tangential and radial momentum integral equations does lead to the 
same transformations, (12) and (14), as that of the full equations, but that the 
approximate solution, (23), is invariant with respect to a much more general 
family of transformations. 

These results make it interesting to investigate the invariance of the tangential 
and radial momentum integral equations with generalized shear terms, which can 
cover laminar as well as certain semi-empirical turbulent shear laws (Rott & 
Lewellen 1966). The outcome of this investigation, which can be easily carried 
out on the basis of the equations given by Rott & Lewellen, is the following: 
(13) and its integrated form, (14), remain unchanged, but (12) has to be modified 
for different shear laws; the general formula is 

R2‘ds = Ryds,, (57) 

where the exponent E represents the power law dependence of the proposed shear 
law on the Reynolds number based on the boundary-layer thickness. For in- 
stance, E = 1 for laminar flow, while E = $ is appropriate for a Blasius-type 
turbulent shear law, which was first adapted to rotating flows (with smooth 
surfaces) by von K&rm&n (1921). 

The quasi-affine transformation is also affected; in (10) and (1 1) at has to be 
replaced by the factor al’(l+E). The generalization of (23) has been given by Rott 
& Lewellen. 

For plane compressible high-speed turbulent boundary layers, the successful 
semi-empirical notion of a ‘turbulent Prandtl number equal to 1 ’ has led to a 
series of highly speculative theories, which generalize transformation laws 
obtained in compressible laminar flow to the turbulent case; a wealth of experi- 
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mental results can be summoned in support of such theoretical results. The same 
speculations could be applied in the rotating flow case, but, in the absence of 
experimental high-speed turbulent boundary-layer results, their application 
cannot be justified, and no further discussion of this generalization is offered. 
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